- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Kent-Dobias, Jaron (4)
-
Sethna, James P. (3)
-
Clement, Colin B. (2)
-
Chen, Kun (1)
-
Goulko, Olga (1)
-
Hayden, Lorien X. (1)
-
Kent, Adrian (1)
-
Kent-Dobias, Jaron P. (1)
-
Liarte, Danilo B. (1)
-
Llamas, David (1)
-
Matty, Michael (1)
-
Quinn, Katherine N. (1)
-
Raju, Archishman (1)
-
Ramshaw, B. J. (1)
-
Rocklin, D. Zeb (1)
-
Teoh, Han Kheng (1)
-
Xu, Qingyang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The planar grasshopper problem, originally introduced by Goulko and Kent (Goulko & Kent 2017 Proc. R. Soc. A 473, 20170494), is a striking example of a model with long-range isotropic interactions whose ground states break rotational symmetry. In this paper we analyze and explain the nature of this symmetry breaking with emphasis on the importance of dimensionality. Interestingly, rotational symmetry is recovered in three dimensions for small jumps, which correspond to the nonisotropic cogwheel regime of the two-dimensional problem. We discuss simplified models that reproduce the symmetry properties of the original system in dimensions. For the full grasshopper model in two dimensions we obtain quantitative predictions for optimal perturbations of the disk. Our analytical results are confirmed by numerical simulationsmore » « less
-
Kent-Dobias, Jaron; Matty, Michael; Ramshaw, B. J. (, Physical Review B)null (Ed.)
-
Teoh, Han Kheng; Quinn, Katherine N.; Kent-Dobias, Jaron; Clement, Colin B.; Xu, Qingyang; Sethna, James P. (, Physical Review Research)null (Ed.)
-
Kent-Dobias, Jaron; Sethna, James P. (, Physical Review E)
-
Raju, Archishman; Clement, Colin B.; Hayden, Lorien X.; Kent-Dobias, Jaron P.; Liarte, Danilo B.; Rocklin, D. Zeb; Sethna, James P. (, Physical Review X)
An official website of the United States government
